skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Köse, Tunç Başar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A major challenge in molecular systems biology is to understand how proteins work to transmit external signals to changes in gene expression. Computationally reconstructing these signaling pathways from protein interaction networks can help understand what is missing from existing pathway databases. We formulate a new pathway reconstruction problem, one that iteratively grows directed acyclic graphs (DAGs) from a set of starting proteins in a protein interaction network. We present an algorithm that provably returns the optimal DAGs for two different cost functions and evaluate the pathway reconstructions when applied to six diverse signaling pathways from the NetPath database. The optimal DAGs outperform an existing k-shortest paths method for pathway reconstruction, and the new reconstructions are enriched for different biological processes. Growing DAGs is a promising step toward reconstructing pathways that provably optimize a specific cost function. 
    more » « less